FUSE Filesystems

William Stearns
wstearns@pobox.com
http://www.stearns.org
Overview

- Adding features to filesystems
- Fuse overview and examples
 - Setup
 - Sshfs, encfs, and gluster
 - Pros and cons
- Wrap up
Existing filesystems

- Underlying block device
 - Translation: partition or full drive
- Format with filesystem
- Kernel mounts block device with filesystem
Could we...

- Automatically encrypt/decrypt?
- Automatically compress/decompress?
- Present tars and zips as directory trees?
- Show an SQL table as a directory?
- Set up a hierarchical filesystem?
Where do we put this code?

- Modify each application
- Modify existing libraries or new library
- New filesystem layer
- Existing filesystems
Issues with core filesystems

- C only
 - Limited libraries
 - Kernel mode, more complicated
- No access to network or other files
- Kernel: poor place for complex features
Add features to individual FS's?

• Different features in different fs's
 – Give ext3 transparent decompression
 – Give XFS ability to descend into tars
 – Give reiserfs4 encryption and decompression

• See the problem?
 – What if Intel nics could send TCP only and other nics UDP only?
So what's the answer?

- Applications don't have these restrictions
- Let an application present whatever it wants
FUSE

• Filesystems in USErspace
 – Now a *program* (fuse application) is responsible for dirs and files
 – When file is needed, kernel asks fuse application for it

• Fuse application can access *anything* to get raw data
 – Including existing local or remote file trees
 – Network connections
 – Carrier Pigeon
 – /dev/random!
Example: decompfs

- Existing file tree /archives/
 - .tar.gzs, .zips, .bz2s
- Want to see uncompressed files
 - Without having to manually compress and decompress
Decompfs

- Mount /uncomp/ as decompfs
 - Request for /uncomp/2008tax.xls
 - Handed to decompfs
 - Decompfs asks for /archives/2008tax.xls.bz2
 - Decompresses
 - Hands file back to original requestor
Fuse Setup

- `yum install fuse fuse-libs`
- `usermod -a -G fuse {username}`
 - Log out and log back in
- `modprobe fuse`
- Check group membership
 - groups
SSHFS Overview

- See files on remote server
- All communication over ssh
 - Encrypted, authenticated
 - Access any other OS with an SSH server
Sshfs Install

- `yum install fuse-sshfs`
Sshfs Example

- `mkdir -p ~/mnt/zaphod/
- `sshfs wstearns@zaphod:/home/wstearns/ ~/mnt/zaphod/
- `ls -al ~/mnt/zaphod/`
Encfs Overview

• Encrypted files live on disk
 – Good if laptop stolen or lost
• Encfs presents them as unencrypted
• File by file encryption
 – No need to create a new block device and preallocate space
Encfs Install

- yum install fuse-encfs
 - Depends on the “rlog” package
Encfs Example

- mkdir ~/.encfs-private/ ~/encfs-root/
- encfs ~/.encfs-private/ ~/encfs-root/
 - Walks you through setup, next slide
- /etc/fstab:
 - encfs /home/wstearns/encfs-root fuse defaults,user,nodev,nosuid,noauto 0 0
Encfs setup options

- Blowfish for 32 bit cpus
- 256 bit for maximum strength
- Default 512 byte block size
- Block filename encoding
- No filename IV chaining
 - Files can be moved to a different dir without re-encoding filename
- Yes, Per-file IV
- No block auth code headers
- Password....
Glusterfs Overview

- Network filesystem
 - TCP/IP, Infiniband
- Parallel storage
 - Replicate files on multiple remote servers
 - Keep one server local too!
- Backend storage is in native format
Glusterfs Install

- We'll do client and server on one machine
- yum install glusterfs-client glusterfs-server glusterfs-libs
- mkdir -p ~/glusterfs-test/conf ~/glusterfs-test/mnt ~/glusterfs-test/brick-1-1
server-1-1.vol

- volume brick
 - type storage/posix
 - option directory /home/wstearns/glusterfs-test/brick-1-1
 - end-volume

- volume server
 - type protocol/server
 - subvolumes brick
 - option transport-type tcp/server
 - option client-volume-filename /home/wstearns/glusterfs-test/conf/client-1-1.vol
 - option auth.ip.brick.allow 127.0.0.1 # *
- End-volume
client-1-1.vol

- volume client
- type protocol/client
- option transport-type tcp/client
- option remote-host 127.0.0.1
- option remote-subvolume brick
- end-volume
Glusterfs Example

- tail -f /var/log/glusterfs/glusterfsd.log
- glusterfsd -f ~/glusterfs-test/conf/server-1-1.vol
- glusterfs -f ~/glusterfs-test/conf/client-1-1.vol
 ~/glusterfs-test/mnt/
Unmounting

- `fusermount -u {mount_point}`
- `umount {mount_mount}`
Other fuse filesystems

- Yacufs – on the fly {music} file conversion
- Clamfs – on-access AV scanning
- Archive access: cpio, tar, rar, ~20 more
- Compression FS's
- Database: mysql, postgresql, bdb
- Network: smb, webdav, gmailfs, httpfs, wikipediafs, curlftpfs, imapfs
- Unionfs, copyfs, svn, git, cvsfs
Fuse Pros

- Many programming languages
- Support for Linux, OS/X, FreeBSD, NetBSD, OpenSolaris, Hurd
- No public windows drivers
 - But: re-export fuse mount with samba
- Present *any* vaguely hierarchical data
Fuse Cons

• Performance
 – Context switches
 – Apps slower than kernels
 • Swappable
 – Fuse content not generally cacheable

• Permissions
 – User and “anyone” permissions fine
 – Group permissions tough
Other similar approaches

- File managers
 - Nautilus
 - Midnight commander
 - Above only good if you're using these apps

- Podfuk
 - coda/nfs based

- LUFS
 - No active development
 - LUFS bridge available
More details

 - Fuse diagram courtesy of this site
- http://fuse.sf.org/sshfs.html
- http://www.arg0.net/encfs
- http://www.gluster.org
Questions?

- wstearns@pobox.com